Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses.

Identifieur interne : 002314 ( Main/Exploration ); précédent : 002313; suivant : 002315

Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses.

Auteurs : Yuepeng Song [Oman] ; Dong Ci ; Min Tian ; Deqiang Zhang

Source :

RBID : pubmed:25002226

Descripteurs français

English descriptors

Abstract

In the field, perennial plants such as poplar (Populus spp.) must adapt to simultaneous exposure to various abiotic stresses, which can affect their growth and survival. However, the mechanisms for stress-specific adaption in response to different abiotic stresses remain unclear. Thus, understanding the unique acclimation process for each abiotic treatment will require a comprehensive and systematic comparison of the responses of poplar to different abiotic stresses. To compare the responses to multiple stresses, we compared physiological effects and transcriptome changes in poplar under four abiotic stresses (salinity, osmotic, heat and cold). Photosynthesis and antioxidant enzymes changed significantly after 6 h abiotic stress treatment. Therefore, using 6 h abiotic stress treatment groups for transcriptome analysis, we identified a set of 863 differentially expressed genes (653 up-regulated and 210 down-regulated) common to osmotic, salinity, heat and cold treatment. We also identified genes specific to osmotic (1,739), salinity (1,222), cold (2,508) and heat (3,200), revealing that salinity stress has the fewest differently-expressed genes. After gene annotation, we found differences in expression of genes related to electron transport, stomatal control, antioxidant enzymes, cell wall alteration, and phytohormone biosynthesis and signaling in response to various abiotic stresses. This study provides new insights to improve our understanding of the mechanisms by which poplar adapts under different abiotic stress conditions and provides new clues for further studies.

DOI: 10.1007/s11103-014-0218-5
PubMed: 25002226


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses.</title>
<author>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China, forward1985@163.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China</wicri:regionArea>
<wicri:noRegion>People's Republic of China</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ci, Dong" sort="Ci, Dong" uniqKey="Ci D" first="Dong" last="Ci">Dong Ci</name>
</author>
<author>
<name sortKey="Tian, Min" sort="Tian, Min" uniqKey="Tian M" first="Min" last="Tian">Min Tian</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25002226</idno>
<idno type="pmid">25002226</idno>
<idno type="doi">10.1007/s11103-014-0218-5</idno>
<idno type="wicri:Area/Main/Corpus">002097</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002097</idno>
<idno type="wicri:Area/Main/Curation">002097</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002097</idno>
<idno type="wicri:Area/Main/Exploration">002097</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses.</title>
<author>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China, forward1985@163.com.</nlm:affiliation>
<country wicri:rule="url">Oman</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China</wicri:regionArea>
<wicri:noRegion>People's Republic of China</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ci, Dong" sort="Ci, Dong" uniqKey="Ci D" first="Dong" last="Ci">Dong Ci</name>
</author>
<author>
<name sortKey="Tian, Min" sort="Tian, Min" uniqKey="Tian M" first="Min" last="Tian">Min Tian</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acclimatization (MeSH)</term>
<term>Chlorophyll (metabolism)</term>
<term>Cyclopentanes (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Oxylipins (metabolism)</term>
<term>Photosynthesis (MeSH)</term>
<term>Populus (genetics)</term>
<term>Signal Transduction (genetics)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acclimatation (MeSH)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Cyclopentanes (métabolisme)</term>
<term>Oxylipines (métabolisme)</term>
<term>Photosynthèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Transduction du signal (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chlorophyll</term>
<term>Cyclopentanes</term>
<term>Oxylipins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chlorophylle</term>
<term>Cyclopentanes</term>
<term>Oxylipines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acclimatization</term>
<term>Gene Expression Regulation, Plant</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Photosynthesis</term>
<term>Stress, Physiological</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acclimatation</term>
<term>Photosynthèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress physiologique</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In the field, perennial plants such as poplar (Populus spp.) must adapt to simultaneous exposure to various abiotic stresses, which can affect their growth and survival. However, the mechanisms for stress-specific adaption in response to different abiotic stresses remain unclear. Thus, understanding the unique acclimation process for each abiotic treatment will require a comprehensive and systematic comparison of the responses of poplar to different abiotic stresses. To compare the responses to multiple stresses, we compared physiological effects and transcriptome changes in poplar under four abiotic stresses (salinity, osmotic, heat and cold). Photosynthesis and antioxidant enzymes changed significantly after 6 h abiotic stress treatment. Therefore, using 6 h abiotic stress treatment groups for transcriptome analysis, we identified a set of 863 differentially expressed genes (653 up-regulated and 210 down-regulated) common to osmotic, salinity, heat and cold treatment. We also identified genes specific to osmotic (1,739), salinity (1,222), cold (2,508) and heat (3,200), revealing that salinity stress has the fewest differently-expressed genes. After gene annotation, we found differences in expression of genes related to electron transport, stomatal control, antioxidant enzymes, cell wall alteration, and phytohormone biosynthesis and signaling in response to various abiotic stresses. This study provides new insights to improve our understanding of the mechanisms by which poplar adapts under different abiotic stress conditions and provides new clues for further studies. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25002226</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>86</Volume>
<Issue>1-2</Issue>
<PubDate>
<Year>2014</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses.</ArticleTitle>
<Pagination>
<MedlinePgn>139-56</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-014-0218-5</ELocationID>
<Abstract>
<AbstractText>In the field, perennial plants such as poplar (Populus spp.) must adapt to simultaneous exposure to various abiotic stresses, which can affect their growth and survival. However, the mechanisms for stress-specific adaption in response to different abiotic stresses remain unclear. Thus, understanding the unique acclimation process for each abiotic treatment will require a comprehensive and systematic comparison of the responses of poplar to different abiotic stresses. To compare the responses to multiple stresses, we compared physiological effects and transcriptome changes in poplar under four abiotic stresses (salinity, osmotic, heat and cold). Photosynthesis and antioxidant enzymes changed significantly after 6 h abiotic stress treatment. Therefore, using 6 h abiotic stress treatment groups for transcriptome analysis, we identified a set of 863 differentially expressed genes (653 up-regulated and 210 down-regulated) common to osmotic, salinity, heat and cold treatment. We also identified genes specific to osmotic (1,739), salinity (1,222), cold (2,508) and heat (3,200), revealing that salinity stress has the fewest differently-expressed genes. After gene annotation, we found differences in expression of genes related to electron transport, stomatal control, antioxidant enzymes, cell wall alteration, and phytohormone biosynthesis and signaling in response to various abiotic stresses. This study provides new insights to improve our understanding of the mechanisms by which poplar adapts under different abiotic stress conditions and provides new clues for further studies. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Yuepeng</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China, forward1985@163.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ci</LastName>
<ForeName>Dong</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Min</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Deqiang</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GEO</DataBankName>
<AccessionNumberList>
<AccessionNumber>GSE37608</AccessionNumber>
<AccessionNumber>GSE41557</AccessionNumber>
<AccessionNumber>GSE42530</AccessionNumber>
<AccessionNumber>GSE43872</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>07</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6RI5N05OWW</RegistryNumber>
<NameOfSubstance UI="C011006">jasmonic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000064" MajorTopicYN="N">Acclimatization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>7</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25002226</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-014-0218-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2013 Apr;161(4):1783-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23447525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2005 Dec 15;444(2):139-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16309626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:601-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4840-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23487796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12908-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11050171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transcription. 2010 Jul-Aug;1(1):41-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21327157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Pol. 2007;54(1):39-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17325747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Mar 1;13(5):1019-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8131736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Aug 17;276(33):30598-607</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11395492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Oct;13(10 ):2191-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11595796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jul;14(7):1557-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Jan;52(354):11-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11181709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Jul;58(4):497-513</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16021335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Oct;118(2):637-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:449-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1254-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20807999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Sep;32(9):1407-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23652820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jul 17;10:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20637123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2004 Sep;2(5):459-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17168892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2014 Jan;150(1):18-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23773142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Genet Genomics. 2009 Jan;36(1):17-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19161942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):703-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Apr 28;14:111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24774695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Nov;13(11):2498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Jul 12;15(13):1201-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16005292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jul;99(3):1258-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jan;11(1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16359910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Nov;17(11):3155-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Sep;7(9):405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1992 Nov;4:1425-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11538167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Jul 12;15(13):1196-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16005291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Aug;23(3):363-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10929129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Apr;116(4):1351-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9536052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:355-381</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Oct;33(10):1767-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20545878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Aug;36(8):1423-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23336343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):2-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1977 Feb;59(2):309-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Jun;48(6):451-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20347322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Sep 12;97(19):10625-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Sep 15;166(14):1544-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19464753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Dec;83(6):559-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23860796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jan;22(1):221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20081115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jan;152(1):245-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19939947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1536-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Jun;188-189:48-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22525244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Sep;112(1):327-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8819328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Jun;89 Spec No:841-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12102510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16261190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2169-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21719693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Feb 13;559(1-3):61-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14960308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2009 Jan;135(1):62-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19121100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21419-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19955427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14537-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17726100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3073-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17122069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2361-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Feb;33(4):691-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Aug;20(8):2238-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Nov;118(3):1067-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9808752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8675-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7567995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2379-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Jan;8(1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12523995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mech Ageing Dev. 1992 Sep;65(2-3):187-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1434948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Oct;9(10):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Aug;56(418):2071-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15983017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Mar;31(3):275-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21367745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Sep;30(9):1107-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Sep;163(1):441-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23864556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Feb;146(2):623-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18162593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Oct;10(4):655-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8893542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12987-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16924117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 May;24(5):2184-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22582100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Oct;29(10):2000-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16930325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):785-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Nov;222(5):926-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16034597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(14):4003-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1996 Jan;47(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24301702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jan;152(1):226-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2013 Apr;140(8):1615-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23533170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Nov;48(3):321-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2007 May;2(3):135-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19516981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Jun;129(2):838-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12068123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Nov;55(407):2331-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15448178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Aug 17;406(6797):731-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10963598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2011 Jul;124(4):501-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21416315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2355-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133880</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Oman</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ci, Dong" sort="Ci, Dong" uniqKey="Ci D" first="Dong" last="Ci">Dong Ci</name>
<name sortKey="Tian, Min" sort="Tian, Min" uniqKey="Tian M" first="Min" last="Tian">Min Tian</name>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</noCountry>
<country name="Oman">
<noRegion>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002314 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002314 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25002226
   |texte=   Comparison of the physiological effects and transcriptome responses of Populus simonii under different abiotic stresses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25002226" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020